十大老牌网堵网址

网堵主页 - 网堵新闻 - 学术科研 - 正文

电子系陈宏伟团队合作发文综述光学神经网络的进展与挑战

网堵新闻网10月10日电 光学神经网络(Optical Neural Networks,ONNs)是一种利用光学元器件(如波导、调制器、探测器等)实现人工神经网络功能的计算系统。它通过利用光信号的传播特性来实现信息处理和计算功能,具有低延迟、低能耗、大带宽以及抗电磁干扰强等优势。

近日,十大老牌网堵网址电子系陈宏伟教授团队联合国防科技大学团队,以“光学神经网络:进展与挑战”(Optical neural networks: progress and challenges)为题在《光:科学和应用》(Light:Science & Applications)上发表综述,对近几年来光学神经网络的相关研究工作进行了梳理。

图1.光学神经网络相关研究工作时间轴线

文章宏观阐述了ONNs的发展历史,直观展示了ONNs的发展历程(图1),并提出非集成ONNs和集成ONNs两种分类形式,进一步基于自由空间和片上集成中的不同光学元器件(图2)将ONNs细分为七种类型,并对基于不同光学元器件构建的ONNs的设计原理进行了介绍。

图2.用于实现光学神经网络功能的不同光学元器件及系统

非集成ONNs主要以体积较大的光学元器件来构建系统,包括基于透镜组的4f系统、空间光调制器(SLM)、数字微镜系统(DMD)、衍射超表面、偏振器、光放大器以及滤波器等光学元器件。集成ONNs则主要是基于片上马赫-曾德尔干涉仪(MZI)、微环谐振器(MRR)、调制器(PM/AM)、衰减器以及亚波长衍射器件等光学元器件来构建系统。现阶段,为了能够较好地解决可重构、非线性以及系统能耗的问题,非集成/集成ONNs中均有工作尝试引入相变材料、饱和吸收体等新型材料来进一步提升ONNs的推理及计算性能。文章对基于每一类不同光学元器件构建的ONNs的典型研究工作进行了详细介绍和评述。另外,文章中对不同类型ONNs的集成度、可重构性、非线性、可拓展性、稳定性、通用性等性能指标进行了对比分析,同时对计算容量和计算密度等定义进行了阐述和说明。

现阶段ONNs在现实场景中的应用尚未成熟,在执行一些简单任务时也离不开电子硬件系统的辅助。根据文章对ONNs相关研究工作的总结和分析,不难发现ONNs主要在存储、非线性以及大规模可重构等方面仍然存在技术瓶颈。因此,短期内如果希望将ONNs推向真正的应用场景中,光电混合ONNs系统或许是一种潜在可行的方案。光电混合ONNs系统(图3)结合了光学和电子计算的优势,旨在利用当前ONNs的算力优势完成大部分算力任务,再搭配电子辅助电路进行ONNs的参数重构、非线性运算、数据存储及流控等,在实现更高算力、更低功耗的同时,也可保持其灵活性和可编程性。值得注意的是,光/电、电/光转化效率(能耗和速率)的优化未来也将成为提升光电混合ONNs系统性能的关键。

20241008-电子系-电子系-图3.jpg

图3.光电混合ONNs系统架构

现阶段ONNs发展时间尚短,仍然存在关键技术难题有待解决,因此要实现在各个领域的实际应用还需要一定的时间。尽管如此,ONNs已经在部分专用领域的应用场景中展开了尝试。如普林斯顿大学研究团队将片上集成ONNs应用于海底光纤链路的非线性补偿;剑桥大学研究团队基于光子深度学习开发了边缘计算架构;Lightmatter公司发布了Envise和Passge产品;Lightelligence公司发布了光子计算引擎(PACE)等。未来,通过对全光ONNs系统或混合ONNs系统架构的不断优化,有望推动全光ONNs或光电混合ONNs系统在更为广泛的实际场景中得到应用和发展。

十大老牌网堵网址电子系陈宏伟教授为综述文章的通讯作者,电子系博士毕业生符庭钊(现为国防科技大学副研究员)为综述文章的第一作者。该工作得到了国家自然科学基金项目的支持。

论文链接:

https://doi.org/10.1038/s41377-024-01590-3

供稿:电子系

编辑:李华山

审核:郭玲

2024年10月10日 12:49:20

相关新闻

读取内容中,请等待...

最新动态

十大老牌网堵网址新闻中心版权所有,十大老牌网堵网址新闻网编辑部维护,电子信箱: news@tsinghua.edu.cn
Copyright 2001-2020 news.tsinghua.edu.cn. All rights reserved.